skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Soleimani, Reza"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Dementia is primarily caused by neurodegenerative diseases like Alzheimer’s disease (AD). It affects millions worldwide, making detection and monitoring crucial. This study focuses on the detection of dementia from speech transcripts of controls and dementia groups. We propose encoding in-text pauses and filler words (e.g., “uh” and “um”) in text-based language models and thoroughly evaluating their impact on performance (e.g., accuracy). Additionally, we suggest using contrastive learning to improve performance in a multi-task framework. Our results demonstrate the effectiveness of our approaches in enhancing the model’s performance, achieving 87% accuracy and an 86% f1-score. Compared to the state of the art, our approach has similar performance despite having significantly fewer parameters. This highlights the importance of pause and filler word encoding on the detection of dementia. 
    more » « less
  2. Sleep staging has a very important role in diagnosing patients with sleep disorders. In general, this task is very time-consuming for physicians to perform. Deep learning shows great potential to automate this process and remove physician bias from decision making. In this study, we aim to identify recent trends on performance improvement and the causes for these trends. Recent papers on sleep stage classification and interpretability are investigated to explore different modeling and data manipulation techniques, their efficiency, and recent advances. We identify an improvement in performance up to 12% on standard datasets over the last 5 years. The improvements in performance do not appear to be necessarily correlated to the size of the models, but instead seem to be caused by incorporating new architectural components, such as the use of transformers and contrastive learning. 
    more » « less
  3. Physiological and kinematic signals from humans are often used for monitoring health. Several processes of interest (e.g., cardiac and respiratory processes, and locomotion) demonstrate periodicity. Training models for inference on these signals (e.g., detection of anomalies, and extraction of biomarkers) require large amounts of data to capture their variability, which are not readily available. This hinders the performance of complex inference models. In this work, we introduce a methodology for improving inference on such signals by incorporating phase-based interpretability and other inference tasks into a multi-task framework applied to a generative model. For this purpose, we utilize phase information as a regularization term and as an input to the model and introduce an interpretable unit in a neural network, which imposes an interpretable structure on the model. This imposition helps us in the smooth generation of periodic signals that can aid in data augmentation tasks. We demonstrate the impact of our framework on improving the overall inference performance on ECG signals and inertial signals from gait locomotion. 
    more » « less